版权说明 帮助中心
首页 > 成果 > 详情

Adaptive Block Compressive Sensing for Noisy Images

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hui-huang Zhao;Paul L. Rosin;Yu-Kun Lai;Jing-hua Zheng;Yao-nan Wang
作者机构:
Hengyang Normal University
Cardiff University
语种:
英文
年:
2020
页码:
389-399
机构署名:
本校为第一机构
摘要:
This paper develops a novel adaptive gradient-based block compressive sensing (AGbBCS_SP) methodology for noisy image compression and reconstruction. The AGbBCS_SP approach splits an image into blocks by maximizing their sparsity, and reconstructs images by solving a convex optimization problem. The main contribution is to provide an adaptive method for block shape selection, improving noisy image reconstruction performance. Experimental results with different image sets indicate that our AGbBCS_SP method is able to achieve better performance, in terms of peak signal to noise ratio (PSNR) and computational cost, than several classical algorithms.

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com