Deep learning algorithms are increasingly employed to exploit side-channel information, such as power consumption and electromagnetic leakage from hardware devices, significantly enhancing attack capabilities. However, relying solely on power traces for side-channel information often requires adequate domain knowledge. To address this limitation, this work proposes a new attack scheme. Firstly, a Convolutional Neural Network (CNN)-based plaintext-extended bilinear feature fusion model is designed. Secondly, multi-model intermediate layers are fused and trained, yielding in the increase of the ...