版权说明 操作指南
首页 > 成果 > 详情

Harmonic Lipschitz Type Spaces and Composition Operators Meet Majorants

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Shaolin;Hamada, Hidetaka
通讯作者:
Shaolin Chen
作者机构:
[Chen, Shaolin] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
[Hamada, Hidetaka] Kyushu Sangyo Univ, Fac Sci & Engn, 3-1 Matsukadai 2-Chome,Higashi ku, Fukuoka 8138503, Japan.
通讯机构:
[Shaolin Chen] C
College of Mathematics and Statistics, Hengyang Normal University, Hengyang, People’s Republic of China
语种:
英文
关键词:
Lipschitz type space;Harmonic function;Composition operator;Pluriharmonic functions
期刊:
JOURNAL OF GEOMETRIC ANALYSIS
ISSN:
1050-6926
年:
2023
卷:
33
期:
6
页码:
1-22
基金类别:
The authors would like to thank the referee for many valuable suggestions. The research of the first author was partly supported by the National Science Foundation of China (Grant no. 12071116), the Hunan Provincial Natural Science Foundation of China (Nos. 2022JJ10001 and 2021JJ30057), the Key Projects of Hunan Provincial Department of Education (Grant no. 21A0429),the Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469), the Science and Technology Plan Project of Hunan Province (2016TP1020), and the Discipline Special Research Projects of Hengyang Normal University (XKZX21002). The research of the second author was partly supported by JSPS KAKENHI Grant Number JP22K03363.
机构署名:
本校为第一机构
院系归属:
数学与统计学院
摘要:
The main purpose of this paper is to develop some methods to study the composition operators between harmonic Lipschitz type spaces. Some characterizations of boundedness and w-compactness of composition operators between the harmonic Lipschitz type spaces will be given. Consequently, the obtained results improve and extend some corresponding known resul...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com