版权说明 操作指南
首页 > 成果 > 详情

Forest Aboveground Biomass Estimation Using Multisource Remote Sensing Data and Deep Learning Algorithms: A Case Study over Hangzhou Area in China

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tian, Xin;Li, Jiejie;Zhang, Fanyi;Zhang, Haibo;Jiang, Mi
通讯作者:
Jiang, M
作者机构:
[Zhang, Fanyi; Li, Jiejie; Tian, Xin] Southeast Univ, Sch Transportat, Dept Intelligent Transportat & Spatial Informat, Nanjing 211102, Peoples R China.
[Tian, Xin] PRC, Minist Transport, Key Lab Safety & Risk Management Transport Infrast, Nanjing 210000, Peoples R China.
[Zhang, Haibo] Hengyang Normal Univ, Coll Geog & Tourism, Hengyang 421002, Peoples R China.
[Jiang, Mi] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Guangzhou 510275, Peoples R China.
通讯机构:
[Jiang, M ] S
Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Guangzhou 510275, Peoples R China.
语种:
英文
关键词:
forest aboveground biomass;deep learning;multisource remote sensing
期刊:
Remote Sensing
ISSN:
2072-4292
年:
2024
卷:
16
期:
6
页码:
1074-
基金类别:
This research was funded by Provincial and Ministerial Level Key Laboratory Scientific Research Project (grant numbers 2242023K30017); Jiangsu Provincial Key R&D Programme (Social Devel-opment) (grant numbers BE2022820).
机构署名:
本校为其他机构
院系归属:
地理与旅游学院
摘要:
The accurate estimation of forest aboveground biomass is of great significance for forest management and carbon balance monitoring. Remote sensing instruments have been widely applied in forest parameters inversion with wide coverage and high spatiotemporal resolution. In this paper, the capability of different remote-sensed imagery was investigated, including multispectral images (GaoFen-6, Sentinel-2 and Landsat-8) and various SAR (Synthetic Aperture Radar) data (GaoFen-3, Sentinel-1, ALOS-2), in aboveground forest biomass estimation. In particular, based on the forest inventory data of Hang...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com