版权说明 操作指南
首页 > 成果 > 详情

Efficient face detection and tracking in video sequences based on deep learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zheng, Guangyong;Xu, Yuming
通讯作者:
Xu, Yuming(xxl1205@163.com)
作者机构:
[Zheng, Guangyong] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Hunan, Peoples R China.
[Zheng, Guangyong] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Hunan, Peoples R China.
[Xu, Yuming] Changsha Normal Univ, Coll Informat Sci & Engn, Changsha 410100, Hunan, Peoples R China.
通讯机构:
[Yuming Xu] C
College of Information Science and Engineering, Changsha Normal University, Changsha, Hunan 410100, China
语种:
英文
关键词:
Correction network;Deep learning;Face detection;Face tracking;Regression network
期刊:
Information Sciences
ISSN:
0020-0255
年:
2021
卷:
568
页码:
265-285
基金类别:
Video-based face detection and tracking technology has been widely applied in the fields of video surveillance, safe driving, human–computer interaction, and medical diagnosis. In video sequences, most existing face detection and tracking methods face interference caused by changes in ambient light, changes in human posture, and occlusion. To achieve accurate face tracking in video sequences, in this paper, we propose an efficient face detection and tracking framework for video sequences based
机构署名:
本校为第一机构
院系归属:
计算机科学与技术学院
摘要:
Video-based face detection and tracking technology has been widely used in video surveillance, safe driving, and medical diagnosis. In video sequences, most existing face detection and tracking methods face interference caused by occlusion, ambient illumination, and changes in human posture. To accurately track human faces in video sequences, we propose an efficient face detection and tracking framework based on deep learning, which includes a SENResNet face detection model and a Regression Network-based Face Tracking (RNFT) model. Firstly, the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com