版权说明 操作指南
首页 > 成果 > 详情

Network Function Placement in Virtualized Radio Access Network with Reinforcement Learning Based on Graph Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yi, Mengting;Lin, Mugang;Chen, Wenhui
通讯作者:
Lin, MG
作者机构:
[Yi, Mengting; Chen, Wenhui; Lin, Mugang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421008, Peoples R China.
[Chen, Wenhui; Lin, Mugang] Hengyang Normal Univ, Hunan Engn Res Ctr Cyberspace Secur Technol & Appl, Hengyang 421002, Peoples R China.
[Chen, Wenhui; Lin, Mugang] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421008, Peoples R China.
通讯机构:
[Lin, MG ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421008, Peoples R China.
Hengyang Normal Univ, Hunan Engn Res Ctr Cyberspace Secur Technol & Appl, Hengyang 421002, Peoples R China.
Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421008, Peoples R China.
语种:
英文
关键词:
network function placement;functional split;radio access network;deep reinforcement learning;graph neural networks;proximal policy optimization
期刊:
Electronics
ISSN:
2079-9292
年:
2025
卷:
14
期:
8
页码:
1686-
基金类别:
This work was supported in part by the Scientific Research Fund of Hunan Provincial Education Department (22A0502, 22B0728, 23C0228, and 23C0240), the National Natural Science Foundation of China (61772179), the Hunan Provincial Natural Science Foundation of China (2019JJ40005, 2023JJ50095), the 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province (Xiangjiaotong [2022] 351), and the Science and Technology Plan Project of Hunan Province (2016TP1020).
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
In 5G and beyond 5G networks, function placement is a crucial strategy for enhancing the flexibility and efficiency of the Radio Access Network (RAN). However, demonstrating optimal function splitting and placement to meet diverse user demands remains a significant challenge. The function placement problem is known to be NP-hard, and previous studies have attempted to address it using Deep Reinforcement Learning (DRL) approaches. Nevertheless, many existing methods fail to capture the network state in RANs with specific topologies, leading to suboptimal decision-making and resource allocation....

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com