Unmanned missions have become more and more popular in recent years. The related technologies of unmanned ground vehicles and unmanned aerial vehicles are growing rapidly, but research on unmanned surface vehicles (USVs) is rare. Water surface object detection algorithms play a crucial role in the field of USVs. However, achieving an object detection algorithm that balances speed and accuracy in the presence of interference is a difficult challenge. We proposed a network, DBCR-YOLO, that improved the detection accuracy while meeting real-time r...