版权说明 操作指南
首页 > 成果 > 详情

LFAH-Net: Laplacian frequency aware hierarchical network for hyperspectral image classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiaoqing Wan*;Hui Liu;Feng Chen;Kun Hu;Zhize Li
通讯作者:
Xiaoqing Wan
作者机构:
[Hui Liu; Feng Chen; Kun Hu; Zhize Li] Hengyang Normal University, College of Computer Science and Technology, 421002, Hengyang, China
Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, 421002, Hengyang, China
[Xiaoqing Wan] Hengyang Normal University, College of Computer Science and Technology, 421002, Hengyang, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, 421002, Hengyang, China
通讯机构:
[Xiaoqing Wan] H
Hengyang Normal University, College of Computer Science and Technology, 421002, Hengyang, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, 421002, Hengyang, China
语种:
英文
期刊:
Digital Signal Processing
ISSN:
1051-2004
年:
2026
卷:
168
页码:
105561
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
In recent years, the combination of convolutional neural networks (CNNs) with transformers for spectral-spatial feature extraction and robust semantic modeling has greatly improved the performance in hyperspectral image (HSI) classification tasks. However, these methods often overlook frequency information; CNNs struggle to capture global dependencies due to limited receptive fields, and transformers tend to lose fine-grained local structures and high-frequency variations. To address these challenges, this paper proposes a Laplacian frequency aware hierarchical network (LFAH-Net). We first des...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com