版权说明 操作指南
首页 > 成果 > 详情

Mesh saliency detection via double absorbing Markov chain in feature space

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Xiuping;Tao, Pingping;Cao, Junjie*;Chen, He;Zou, Changqing
通讯作者:
Cao, Junjie
作者机构:
[Liu, Xiuping; Cao, Junjie; Chen, He; Tao, Pingping] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China.
[Zou, Changqing] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421000, Peoples R China.
[Zou, Changqing] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada.
通讯机构:
[Cao, Junjie] D
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China.
语种:
英文
关键词:
Mesh saliency;Absorbing Markov chain;Feature space;Foreground cues
期刊:
VISUAL COMPUTER
ISSN:
0178-2789
年:
2016
卷:
32
期:
9
页码:
1121-1132
基金类别:
National Natural Science Foundation of China#&#&#61173102 National Natural Science Foundation of China#&#&#61370143 National Natural Science Foundation of China#&#&#61363048
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
We propose a mesh saliency detection approach using absorbing Markov chain. Unlike most of the existing methods based on some center-surround operator, our method employs feature variance to obtain insignificant regions and considers both background and foreground cues. Firstly, we partition an input mesh into a set of segments using Ncuts algorithm and then each segment is over segmented into patches based on Zernike coefficients. Afterwards, some background patches are selected by computing feature variance within the segments. Secondly, the absorbed time of each node is calculated via absor...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com