We propose a mesh saliency detection approach using absorbing Markov chain. Unlike most of the existing methods based on some center-surround operator, our method employs feature variance to obtain insignificant regions and considers both background and foreground cues. Firstly, we partition an input mesh into a set of segments using Ncuts algorithm and then each segment is over segmented into patches based on Zernike coefficients. Afterwards, some background patches are selected by computing feature variance within the segments. Secondly, the absorbed time of each node is calculated via absor...