版权说明 操作指南
首页 > 成果 > 详情

ESRM: an efficient regression model based on random kernels for side channel analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ou, Yu;Li, Lang;Li, Di;Zhang, Jian
通讯作者:
Li, Lang(lilang911@126.com)
作者机构:
[Ou, Yu; Zhang, Jian; Li, Di; Li, Lang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Ou, Yu; Zhang, Jian; Li, Di; Li, Lang] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China.
通讯机构:
[Lang Li] C
College of Computer Science and Technology, Hengyang Normal University, Hengyang, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
Convolution;Deep learning;Regression analysis;Side channel attack;Convolution kernel;Deep learning;Evaluation metrics;Model-based OPC;Power traces;Random convolution kernel;Random kernels;Regression modelling;Side-channel analysis;Signal-processing;Signal processing
期刊:
International Journal of Machine Learning and Cybernetics
ISSN:
1868-8071
年:
2022
卷:
13
期:
10
页码:
3199-3209
基金类别:
This research is supported by Scientific Research Fund of Hunan Provincial Education Department with Grant No.19A072, Innovation Platform open Fund of Hengyang Normal University with Grant 2021HSKFJJ038, the science and technology innovation Program of Hunan Province (2016TP1020), Application-oriented Special Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong [2018] 469).
机构署名:
本校为第一机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Many researches transform the traditional side channel analysis (SCA) into a classification problem. However, there are some inconsistencies in the evaluation metrics and excessive training overhead. A regression model theory is proposed from power traces to intermediate values in this work. It leads us to design a random convolution model that can closely fit the timing features of power consumption and transform them directly to intermediate values. In training phase, the raw power traces on ASCAD is processed to the dataset with six subsets,...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com