版权说明 操作指南
首页 > 成果 > 详情

Adaptive gradient-based block compressive sensing with sparsity for noisy images

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Hui-Huang*;Rosin, Paul L.;Lai, Yu-Kun;Zheng, Jin-Hua;Wang, Yao-Nan
通讯作者:
Zhao, Hui-Huang
作者机构:
[Zhao, Hui-Huang] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang, Hunan, Peoples R China.
[Zheng, Jin-Hua; Zhao, Hui-Huang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang, Peoples R China.
[Lai, Yu-Kun; Rosin, Paul L.] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales.
[Wang, Yao-Nan] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China.
通讯机构:
[Zhao, Hui-Huang] H
Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang, Hunan, Peoples R China.
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang, Peoples R China.
语种:
英文
关键词:
Compressed sensing;Convex optimization;Image enhancement;Image reconstruction;Signal to noise ratio;Adaptive;Adaptive methods;Block Compressive Sensing;Computational costs;Convex optimization problems;Gradient based;Peak signal to noise ratio;Sparsity;Image compression
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2020
卷:
79
期:
21-22
页码:
14825-14847
基金类别:
This work was supported by National Natural Science Foundation of China (61503128), Science and Technology Plan Project of Hunan Province (2016TP1020), Scientific Research Fund of Hunan Provincial Education Department (16C0226,17C0223,18A333), Hengyang guided science and technology projects and Application-oriented Special Disciplines (Hengkefa [2018]60-31), Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469), Hunan Province Special Funds of Central Government for Guiding Local Science and Technology Development (2018CT5001) and Subject Group Construction Project of Hengyang Normal University (18XKQ02). We would like to thank NVIDIA for the GPU donation.
机构署名:
本校为通讯机构
院系归属:
计算机科学与技术学院
摘要:
This paper develops a novel adaptive gradient-based block compressive sensing (AGbBCS_SP) methodology for noisy image compression and reconstruction. The AGbBCS_SP approach splits an image into blocks by maximizing their sparsity, and reconstructs images by solving a convex optimization problem. In block compressive sensing, the commonly used square block shapes cannot always produce the best results. The main contribution of our paper is to provide an adaptive method for block shape selection, improving noisy image reconstruction performance. The proposed algorithm can adaptively achieve bett...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com