版权说明 操作指南
首页 > 成果 > 详情

Video image target monitoring based on RNN-LSTM

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Feng;Chen, Zhigang*;Wang, Jie
通讯作者:
Chen, Zhigang
作者机构:
[Chen, Zhigang; Liu, Feng] Cent S Univ, Sch Software, Changsha 410075, Hunan, Peoples R China.
[Liu, Feng] Univ Jinan, Sch Informat Sci & Engn, Jinan, Shandong, Peoples R China.
[Wang, Jie] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang, Peoples R China.
通讯机构:
[Chen, Zhigang] C
Cent S Univ, Sch Software, Changsha 410075, Hunan, Peoples R China.
语种:
英文
关键词:
Recurrent neural network;Long short-term memory;Deep learning network;Video image;Target monitoring;Algorithm design
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2019
卷:
78
期:
4
页码:
4527-4544
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
Traditional image object classification and detection algorithms and strategies cannot meet the problem of video image acquisition and processing. Deep learning deliberately simulates the hierarchical structure of human brain, and establishes the mapping from low-level signals to high-level semantics, so as to achieve hierarchical feature representation of data. Deep learning technology has powerful visual information processing ability, which has become the forefront technology and domestic and international research hotspots to deal with this...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com