版权说明 操作指南
首页 > 成果 > 详情

A Novel Stacked Network Method for Enhancing the Performance of Side-Channel Attacks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yin, Zhicheng;Li, Lang;Ou, Yu
通讯作者:
Li, L
作者机构:
[Ou, Yu; Li, Lang; Yin, Zhicheng] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Ou, Yu; Li, Lang; Yin, Zhicheng] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Side-channel analysis;deep learning;stacking;ensemble learning;model generalization
期刊:
计算机、材料和连续体(英文)
ISSN:
1546-2218
年:
2025
卷:
83
期:
1
页码:
1001-1022
基金类别:
Hunan Provincial Natural Science Foundation of China [2022JJ30103]; The 14th Five-Year Plan" Key Disciplines and Application-Oriented Special Disciplines of Hunan Province [Xiangjiaotong [2022] 351]; Science and Technology Innovation Program of Hunan Province [2016TP1020]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
The adoption of deep learning-based side-channel analysis (DL-SCA) is crucial for leak detection in secure products. Many previous studies have applied this method to break targets protected with countermeasures. Despite the increasing number of studies, the problem of model overfitting. Recent research mainly focuses on exploring hyperparameters and network architectures, while offering limited insights into the effects of external factors on side-channel attacks, such as the number and type of models. This paper proposes a Side-channel Analysis method based on a Stacking ensemble, called Sta...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com