版权说明 操作指南
首页 > 成果 > 详情

Research on Urban Water Supply Network Leakage Forecasting Based on the LSTM-AM Model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yaxin Zhao;Yuebing Xu;Xiaowu Zhang;Jiadong Ye
作者机构:
[Yaxin Zhao; Yuebing Xu; Xiaowu Zhang; Jiadong Ye] College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
urban water supply network leakage forecasting;long short-term memory network;attention mechanism;LSTM-AM model
年:
2023
页码:
1548-1552
会议名称:
2023 9th International Conference on Computer and Communications (ICCC)
会议论文集名称:
2023 9th International Conference on Computer and Communications (ICCC)
会议时间:
08 December 2023
会议地点:
Chengdu, China
出版者:
IEEE
ISBN:
979-8-3503-1726-8
基金类别:
10.13039/501100008082-Hengyang Normal University
机构署名:
本校为第一机构
院系归属:
物理与电子工程学院
摘要:
The effective forecasting of urban water supply network leakage is the premise and basis for network leakage control. In response to the problem that Long Short-Term Memory (LSTM) network tends to ignore the importance of data information, an urban water supply network leakage forecasting model is proposed based on the combination of LSTM and Attention Mechanism (AM). In this paper, the original leakage data of the District Metering Area in Zhuzhou City are used as the research object and pre-processed by Savitzky-Golay filter smoothing. Then, the LSTM network is used to extract the trajectory...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com