版权说明 操作指南
首页 > 成果 > 详情

Batch-transformer for scene text image super-resolution

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Sun, Yaqi;Xie, Xiaolan;Li, Zhi;Yang, Kai
通讯作者:
Xie, XL
作者机构:
[Li, Zhi; Sun, Yaqi; Xie, Xiaolan] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin, Guangxi, Peoples R China.
[Xie, Xiaolan] Guilin Univ Technol, Sch Informat Sci & Engn, Guilin, Guangxi, Peoples R China.
[Yang, Kai; Sun, Yaqi] Hengyang Normal Univ, Sch Comp Sci & Technol, Hengyang, Peoples R China.
通讯机构:
[Xie, XL ] G
Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin, Guangxi, Peoples R China.
Guilin Univ Technol, Sch Informat Sci & Engn, Guilin, Guangxi, Peoples R China.
语种:
英文
关键词:
Computer vision;Super-resolution;Scene text image;Batch-transformer;Loss function
期刊:
VISUAL COMPUTER
ISSN:
0178-2789
年:
2024
页码:
1-11
基金类别:
National Natural Science Foundation of China; Guangxi key research and development program [2022AB43023, 2022AB05005, 2022AB05024]; Guangxi Science and Technology Major Program [AA23062001-3, AA23062035]; [62262011]; [61772179]
机构署名:
本校为其他机构
摘要:
Recognizing low-resolution text images is challenging as they often lose their detailed information, leading to poor recognition accuracy. Moreover, the traditional methods, based on deep convolutional neural networks (CNNs), are not effective enough for some low-resolution text images with dense characters. In this paper, a novel CNN-based batch-transformer network for scene text image super-resolution (BT-STISR) method is proposed to address this problem. In order to obtain the text information for text reconstruction, a pre-trained text prior module is employed to extract text information. ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com