版权说明 操作指南
首页 > 成果 > 详情

STNMDA: A Novel Model for Predicting Potential Microbe-Drug Associations with Structure-Aware Transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fan, Liu;Yang, Xiaoyu;Wang, Lei;Zhu, Xianyou
通讯作者:
Zhu, XY;Wang, L
作者机构:
[Zhu, Xianyou; Fan, Liu] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421010, Peoples R China.
[Wang, Lei; Yang, Xiaoyu; Fan, Liu] Changsha Univ, Big Data Innovat & Entrepreneurship Educ Ctr Hunan, Changsha 410022, Peoples R China.
通讯机构:
[Zhu, XY ] H
[Wang, L ] C
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421010, Peoples R China.
Changsha Univ, Big Data Innovat & Entrepreneurship Educ Ctr Hunan, Changsha 410022, Peoples R China.
语种:
英文
关键词:
Microbe-drug association;microbe-disease-drug association;structure-aware transformer;deep neural network;biomarkers;bile acids
期刊:
CURRENT BIOINFORMATICS
ISSN:
1574-8936
年:
2024
卷:
19
期:
10
页码:
919-932
基金类别:
National Natural Science Foundation of China [62272064]; Natural Science Foundation of Hunan Province [2023JJ60185]; The 14th Five-Year Plan" Key Disciplines and Application-oriented Special Disciplines of Hunan Province [Xiangjiaotong [2022] 351]
机构署名:
本校为第一机构
院系归属:
计算机科学与技术学院
摘要:
Introduction: Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches. Methods: We proposed an efficient computational model, STNMDA, that integrated a StructureAware Tr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com