版权说明 操作指南
首页 > 成果 > 详情

GLFAFormer: DeepFake forgery detection with adaptive feature extract and align

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Long;Zhao, Huihuang;He, Jiaxin;Meng, Weiliang
通讯作者:
Zhao, HH
作者机构:
[He, Jiaxin; Zhao, Huihuang; Chen, Long; Zhao, HH] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Zhao, Huihuang] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
[Meng, Weiliang] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China.
通讯机构:
[Zhao, HH ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
CLIP;DeepFake;Image forgery detection;VisionTransformer
期刊:
Digital Signal Processing
ISSN:
1051-2004
年:
2025
卷:
165
页码:
105321
基金类别:
Industry University Research Innovation Foundation of Ministry of Education Science and Technology Development Center [2020QT09]; "14th Five-Year Plan" Key Disciplines and Application-oriented Special Disciplines of Hunan Province (Xiangjiaotong) [[2022] 351]; Science and Technology Innovation Project of Hengyang [202250045231]; Hunan Provincial Graduate Research and Innovation Project [CX20240976]; Open Research Fund of the State Key Laboratory of Multimodal Artificial Intelligence Systems [MAIS-2023-09]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
With the rapid development of generative models, there is an increasing demand for universal fake image detectors. In this paper, we investigate the problem of fake image detection for the synthesis of generative models to detect fake images from multiple generative methods. Recent research methods explore the benefits of pre-trained models and mainly adopt a fixed paradigm of training additional classifiers separately, but we find that the fixed paradigm hinders the full learning of forgery features, leading to insufficient representation learning in the detector.The main reason is that the f...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com