版权说明 操作指南
首页 > 成果 > 详情

Strong Convergence of Neuro-Fuzzy Learning With Adaptive Momentum for Complex System

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Yan;Liu, Fang;Li, Long*
通讯作者:
Li, Long
作者机构:
[Liu, Yan] Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian 116034, Peoples R China.
[Liu, Fang] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China.
[Li, Long] Hengyang Normal Univ, Dept Math & Computat Sci, Hengyang 421002, Peoples R China.
通讯机构:
[Li, Long] H
Hengyang Normal Univ, Dept Math & Computat Sci, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
adaptive momentum;complex;fuzzy inference system;neuro-fuzzy algorithm;Strong convergence
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2019
卷:
7
页码:
39362-39368
基金类别:
This work was supported in part by the National Natural Science Foundation of China under Grant 61403056 and Grant 11401185, in part by the Natural Science Foundation Guidance Project of Liaoning Province under Grant 201602050, and in part by the Dalian Youth Science and Technology Star Project under Grant 2017RQ129.
机构署名:
本校为通讯机构
院系归属:
数学与统计学院
摘要:
This paper studies a split-complex-valued neuro-fuzzy algorithm for fuzzy inference system, which realizes a frequently used zero-order Takagi-Sugeno-Kang system. Here, adaptive momentum is utilized to speed up the learning convergence. Some strong convergence results are demonstrated based on the weak convergence results, which expresses that the weight sequence of fuzzy parameters converges to a fixed point. Simulation resul...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com