版权说明 操作指南
首页 > 成果 > 详情

Hyperspectral image classification using a large selective kernel network hybridized tokenization transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wan, Xiaoqing;He, Yupeng;Gao, Weizhe;Chen, Feng;Chen, Wenhui
通讯作者:
Wan, XQ
作者机构:
[Chen, Wenhui; Chen, Feng; Gao, Weizhe; He, Yupeng; Wan, Xiaoqing] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Wan, Xiaoqing] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Wan, XQ ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Deep learning;Genetic algorithms;Hyperspectral imaging;Multispectral imaging;Neural networks;Remote sensing
期刊:
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
ISSN:
0740-3224
年:
2025
卷:
42
期:
2
页码:
251-260
基金类别:
Hengyang Normal University [2022QD07]; Hengyang City Guidance Plan Project [202323036897]; The 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province (Xiangjiaotong) [[2022] 351]; Science and Technology Plan Project of Hunan Province [2016TP1020]; Scientific Research Fund of Hunan Provincial Education Department [23B0666]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
Convolutional neural networks (CNNs) are widely used for hyperspectral image (HSI) classification. However, the high spatial and spectral dimensionality of HSIs often leads to significant computational costs and challenges during network training. Moreover, CNNs are limited in capturing high-level semantic features. In contrast, transformer models are better suited to modeling high-level semantic information and capturing long-range dependencies, making them a promising approach for HSI classification. In this paper, we propose a novel HSI classification framework, LSKTT, which integrates a la...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com