版权说明 操作指南
首页 > 成果 > 详情

The Heinz type inequality, Bloch type theorem and Lipschitz characteristic of polyharmonic mappings

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Shaolin
通讯作者:
Chen, SL
作者机构:
[Chen, Shaolin; Chen, SL] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
通讯机构:
[Chen, SL ] H
Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
语种:
英文
关键词:
Heinz type inequality;Lipschitz continuous;Polyharmonic mapping;Quasiconformal mapping
期刊:
Indagationes Mathematicae
ISSN:
0019-3577
年:
2023
卷:
34
期:
6
页码:
1271-1302
基金类别:
The author would like to thank the referee for many valuable suggestions. This research was partly supported by the Hunan Provincial Natural Science Foundation of China (No. 2022JJ10001 ), the National Science Foundation of China (grant no. 12071116 ), the Key Projects of Hunan Provincial Department of Education (grant no. 21A0429 ); the Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469 ), the Science and Technology Plan Project of Hunan Province ( 2016TP1020 ), and the Discipline Special Research Projects of Hengyang Normal University ( XKZX21002 ).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Suppose that f satisfies the following: (1) the polyharmonic equation triangle(m) f = triangle(triangle(m-1) f ) = phi(m) (phi(m) is an element of C((B-n) over bar, R-n)), (2) the boundary conditions triangle(0) f = phi(0), triangle(1) f = phi 1, ..., triangle(m-1) f = phi(m-1 )on Sn-1 (phi (j) is an element of C(Sn-1, R-n) for j is an element of {0, 1, ... , m - 1} and Sn-1 denotes the boundary of the unit ball B-n), and (3) f (0) = 0, where n >= 3 and m >= 1 are integers. Initially, we prove a Schwarz type lemma and use it to obtain a Heinz type inequality of mappings satisfying the polyharm...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com