版权说明 操作指南
首页 > 成果 > 详情

An online gradient-based parameter identification algorithm for the neuro-fuzzy systems

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Long*;Long, Zuqiang;Ying, Hao;Qiao, Zhijun
通讯作者:
Li, Long
作者机构:
[Li, Long] Hengyang Normal Univ, Coll Math & Stat, Hengyang, Hunan, Peoples R China.
[Long, Zuqiang] Hengyang Normal Univ, Coll Phys & Elect Engn, Hengyang, Hunan, Peoples R China.
[Ying, Hao] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA.
[Qiao, Zhijun] Univ Texas Rio Grande Valley, Dept Math, Edinburg, TX 78539 USA.
通讯机构:
[Li, Long] H
Hengyang Normal Univ, Coll Math & Stat, Hengyang, Hunan, Peoples R China.
语种:
英文
关键词:
Adaptive learning rate;Convergence;Mamdani fuzzy model;Neuro-fuzzy systems;Online gradient learning algorithm
期刊:
Fuzzy Sets and Systems
ISSN:
0165-0114
年:
2022
卷:
426
页码:
27-45
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11401185]; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [19A063, 17A031]; Science and Technology Plan Project of Hunan Province (Hunan Provincial Key Laboratory of Intelligent Information Processing and Application) [2016TP1020]; Science and Technology Plan Project of Hengyang City [2017KJ183]; Application-oriented Characterized Disciplines, Double First-Class University Project of Hunan Province [Xiangjiaotong [2018] 469]; China Scholarship CouncilChina Scholarship Council [201608430257]; 2019-2020 Hunan overseas distinguished professorship project [2019014]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
物理与电子工程学院
摘要:
Online gradient descent method has been widely applied for parameter learning in neuro-fuzzy systems. The success of the application relies on the convergence of the learning procedure. However, there barely have been convergence analyses on the online learning procedure for neuro-fuzzy systems. In this paper, an online gradient learning algorithm with adaptive learning rate is proposed to identify the parameters of the neuro-fuzzy systems representing the Mamdani fuzzy model with Gaussian fuzzy sets. We take the reciprocals of the variances of...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com