版权说明 操作指南
首页 > 成果 > 详情

InDReCT: Intra-domain dual reconstruction for cross-domain transfer in camouflaged object detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yue, Guowen;Jiao, Ge;Wang, Fangyan
通讯作者:
Jiao, G
作者机构:
[Wang, Fangyan; Jiao, Ge; Yue, Guowen] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Hunan, Peoples R China.
[Jiao, Ge] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Hunan, Peoples R China.
[Jiao, Ge] Hengyang Normal Univ, Hunan Engn Res Ctr Cyberspace Secur Technol & Appl, Hengyang 421002, Hunan, Peoples R China.
通讯机构:
[Jiao, G ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Hunan, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Hunan, Peoples R China.
Hengyang Normal Univ, Hunan Engn Res Ctr Cyberspace Secur Technol & Appl, Hengyang 421002, Hunan, Peoples R China.
语种:
英文
关键词:
Camouflaged object detection;Self-supervised learning;Reconstruction;Adapter;Segment anything model
期刊:
Knowledge-Based Systems
ISSN:
0950-7051
年:
2025
卷:
329
页码:
114334
基金类别:
Science and Technology Plan Project of Hunan Province [2016TP1020]; The 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province [Xiangjiaotong [2022] 351]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Current Camouflaged Object Detection (COD) methods primarily rely on a direct mapping from image to mask. However, due to the inherent semantic and structural gap between the image and its corresponding mask, the learned feature representations often exhibit poor generalization ability. To address this issue, we propose a novel intra-domain dual reconstruction framework, termed InDReCT, which reformulates the image-to-mask prediction as a cross-domain transfer task by simultaneously reconstructing both the input image and its corresponding mask...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com