版权说明 操作指南
首页 > 成果 > 详情

BCS: A neural distinguisher method based on differential propagation uncertainty of nonlinear components and network adaptability

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhu, Siqi;Li, Lang;Hu, Zhiwen;Hu, Yemao
通讯作者:
Li, L
作者机构:
[Hu, Yemao; Zhu, Siqi; Li, Lang; Hu, Zhiwen] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Hu, Yemao; Zhu, Siqi; Li, Lang; Hu, Zhiwen] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
期刊:
PHYSICA SCRIPTA
ISSN:
0031-8949
年:
2025
卷:
100
期:
3
页码:
035008
基金类别:
Hunan Provincial Natural Science Foundation of China [2022JJ30103]; The 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province(Xiangjiaotong) [[2022] 351]; Science and Technology Innovation Program of Hunan Province [2016TP1020]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
The neural distinguisher (ND) is the combined product of differential cryptanalysis and deep learning. Its emergence has greatly promoted the development of differential cryptanalysis. Current approaches to improving the performance of NDs focus on data input formats and training frameworks. However, many researchers independently focused on enhancing the data input format or training framework, neglecting their adaptability to each other. Additionally, little research has focused on improving the data input format based on its correlation with the components of the cipher. This paper proposes...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com