版权说明 操作指南
首页 > 成果 > 详情

Optimizing label correlation in deep learning-based side-channel analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xia, Shengcheng;Li, Lang;Ou, Yu;Xiang, Jiahao
通讯作者:
Li, L
作者机构:
[Li, Lang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Side-channel analysis;Sample correlation locally;Deep learning;Kernel density estimation;Profiling analysis
期刊:
Microelectronics Journal
ISSN:
0959-8324
年:
2025
卷:
162
页码:
106721
基金类别:
Hunan Provincial Natural Science Foundation of China [2022JJ30103]; The 14th Five-Year Plan" Key Disciplines and Application-oriented Special Disciplines of Hunan Province (Xiangjiaotong) [[2022] 351]; Science and Technology Innovation Program of Hunan Province [2016TP1020]; Postgraduate Scientific Research Innovation Project of Hunan Province [CX20240977]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Label distribution learning techniques can significantly enhance the effectiveness of side-channel analysis. However, this method relies on using probability density functions to estimate the relationships between labels. The settings of parameters play a crucial role in the impact of the attacks. This study introduces a non-parametric statistical method to calculate the distribution between labels, specifically employing smoothing with the Gaussian kernel function and adjusting bandwidth. Then, the aggregation of the results from each label processed by the Gaussian kernel facilitates a hypot...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com