版权说明 操作指南
首页 > 成果 > 详情

High-Throughput 3D Rice Chalkiness Detection Based on Micro-CT and VSE-UNet

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cai, Zhiqi;Deng, Yangjun;Zhu, Xinghui;Li, Bo;Xu, Chenglin;...
通讯作者:
Li, DH
作者机构:
[Cai, Zhiqi; Zhu, Xinghui; Li, Bo; Deng, Yangjun; Li, Donghui] Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China.
[Xu, Chenglin] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
通讯机构:
[Li, DH ] H
Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China.
语种:
英文
关键词:
rice chalkiness;micro-CT;deep learning;3D reconstruction
期刊:
Agronomy
ISSN:
2073-4395
年:
2025
卷:
15
期:
2
基金类别:
National Natural Science Foundation of China; Scientific Research Fund of the Hunan Provincial Education Department [24B0194, 24A0498]; [62401203]
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
Rice is a staple food for nearly half the global population and, with rising living standards, the demand for high-quality grain is increasing. Chalkiness, a key determinant of appearance quality, requires accurate detection for effective quality evaluation. While traditional 2D imaging has been used for chalkiness detection, its inherent inability to capture complete 3D morphology limits its suitability for precision agriculture and breeding. Although micro-CT has shown promise in 3D chalk phenotype analysis, high-throughput automated 3D detection for multiple grains remains a challenge, hind...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com