版权说明 操作指南
首页 > 成果 > 详情

Enhancing neural distinguishers with partial difference bits leakage

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Yemao;Li, Lang;Zhu, Siqi;Hu, Zhiwen
通讯作者:
Li, L
作者机构:
[Hu, Yemao; Zhu, Siqi; Li, Lang; Hu, Zhiwen] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Hu, Yemao; Zhu, Siqi; Li, Lang; Hu, Zhiwen] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Lightweight block cipher;Cryptanalysis;Deep learning;Neural distinguisher;BipBip
期刊:
INTERNET OF THINGS
ISSN:
2543-1536
年:
2025
卷:
29
页码:
101438
基金类别:
Hunan Provincial Natural Science Foundation of China [2022JJ30103]; The "the 14th Five-Year Plan" Key Disciplines and Application-oriented Special Disciplines of Hunan Province, China [Xiangjiaotong [2022] 351]; Science and Technology Innovation Program of Hunan Province, China [2016TP1020]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Lightweight block ciphers applied to the Internet of Things have been challenged by novel cryptanalysis methods. Neural cryptanalysis has become a cutting-edge method in cryptanalysis since Gohr successfully combined neural networks with differential cryptanalysis. However, how to improve the distinguishing accuracy of neural distinguishers is a major challenge in the field. Therefore, a neural distinguisher model MCPLD (Multiple Ciphertext Pairs and Leaked Differences) is proposed in this paper. The input data format of the MCPLD combines the processed leaked differences with multiple ciphert...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com