版权说明 操作指南
首页 > 成果 > 详情

MD-DLATA: optimized template attack method based on multi-domain feature fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhiying Feng;Lang Li*
通讯作者:
Lang Li
作者机构:
College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
[Zhiying Feng; Lang Li] College of Computer Science and Technology, Hengyang Normal University, Hengyang, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
通讯机构:
[Lang Li] C
College of Computer Science and Technology, Hengyang Normal University, Hengyang, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
Deep learning-assisted template attack (DLATA);Multi-domain feature fusion;Triplet network;Wavelet transform (WT);Support vector machine (SVM)
期刊:
Cluster Computing
ISSN:
1386-7857
年:
2025
卷:
28
期:
16
页码:
1-11
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
The deep learning-assisted template attack (DLATA) is an advanced side-channel attack (SCA) technique that employs a triplet network to embed side-channel features efficiently within a template attack framework. This method utilizes a triplet network to efficiently embed input data into a template attack (TA) in a single training iteration. Although the triplet network is highly effective in feature extraction, its performance deteriorates significantly in high-noise environments, thereby highlighting the need for further improvements. The trip...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com