For accurately estimating the normal of a point, the structure of its neighborhood has to be analyzed. All the previous methods use some neighborhood centering at the point, which is prone to be sampled from different surface patches when the point is near sharp features. Then more inaccurate normals or higher computation cost may be unavoidable. To conquer this problem, we present a fast and quality normal estimator based on neighborhood shift. Instead of using the neighborhood centered at the point, we wish to locate a neighborhood containing...