版权说明 操作指南
首页 > 成果 > 详情

Fusion of circulant singular spectrum analysis and multiscale local ternary patterns for effective spectral-spatial feature extraction and small sample hyperspectral image classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wan, Xiaoqing;Chen, Feng;Gao, Weizhe;Mo, Dongtao;Liu, Hui
通讯作者:
Wan, XQ
作者机构:
[Mo, Dongtao; Chen, Feng; Gao, Weizhe; Liu, Hui; Wan, Xiaoqing] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Wan, Xiaoqing] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Wan, XQ ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Circulant singular spectrum analysis (CiSSA);Decision fusion;Hyperspectral image (HSI);Local ternary pattern (LTP);Pattern classification
期刊:
Scientific Reports
ISSN:
2045-2322
年:
2025
卷:
15
期:
1
页码:
6972
基金类别:
Scientific Research Fund of Hunan Provincial Education Department; HSI Analysis group; NSF
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
Hyperspectral images (HSIs) contain rich spectral and spatial information, motivating the development of a novel circulant singular spectrum analysis (CiSSA) and multiscale local ternary pattern fusion method for joint spectral-spatial feature extraction and classification. Due to the high dimensionality and redundancy in HSIs, principal component analysis (PCA) is used during preprocessing to reduce dimensionality and enhance computational efficiency. CiSSA is then applied to the PCA-reduced images for robust spatial pattern extraction via circulant matrix decomposition. The spatial features ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com