版权说明 操作指南
首页 > 成果 > 详情

Combining stochastic grammar and semi-supervised learning techniques to extract RNA structures with pseudoknots

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Sixin Tang
通讯作者:
Tang, S.
作者机构:
[Tang S.] College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, China
通讯机构:
College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
Classification (of information);Forecasting;Learning algorithms;RNA;Stochastic models;Supervised learning;Performance;Performance improvement;Prediction accuracy;Pseudo-knots;RNA sequences;RNA structures;Semi-supervised learning;Semi-supervised learning techniques;Stochastic grammars;Unlabeled sequences;Stochastic systems
期刊:
International Journal of Performability Engineering
ISSN:
0973-1318
年:
2019
卷:
15
期:
7
页码:
1939-1946
基金类别:
This work is supported by the Scientific Research Projects (No. 15C0204) of the Hunan Education Department.
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
To predict RNA structures with pseudoknots, traditional stochastic grammar models must collect several related labeled RNA sequences, which limits the practical application of this method. In order to use a large number of unlabeled RNA sequences effectively for structure prediction, the combination of stochastic grammar and semi-supervised learning techniques has been proposed. In these techniques, we used a small amount of labeled RNA sequences and a large number of unlabeled sequences as a training set of the prediction model. Designing a se...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com