版权说明 操作指南
首页 > 成果 > 详情

A smoothing algorithm with momentum for training max-min fuzzy neural networks

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Long Li;Rui Xiao;Guohui Zhang
通讯作者:
Li, L.
作者机构:
[Rui Xiao] Department of Electronic Science, Huizhou University, Huizhou 516067, Guangdong, China
[Long Li] College of Computer, National University of Defense Technology, Changsha 410005, Hunan, China
[Guohui Zhang; Long Li] Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang 421008, Hunan, China
通讯机构:
[Li, L.] C
College of Computer, , Changsha 410005, Hunan, China
语种:
英文
关键词:
Gradient descent;Max-min fuzzy neural networks;Momentum;Smoothing algorithm
期刊:
International Journal of Applied Mathematics & Statistics
ISSN:
0973-1377
年:
2013
卷:
47
期:
17
页码:
408-415
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
A smoothing algorithm with momentum for training the max-min fuzzy neural networks is constructed to speed up the learning process in this paper. Specifically, we apply a smooth function to approximate max-min functions and use all partial derivatives of the smooth approximation function with respect to weight to substitute those of the actual network output. Then, the smoothing algorithm with momentum is constructed by the gradient descent method. Finally, two numerical examples are provided to show the effectiveness of this algorithm for training max-min fuzzy neural networks by comparing wi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com