版权说明 操作指南
首页 > 成果 > 详情

Transfer learning-based few-shot sample deep learning-assisted template attacks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Feng, Zhiying;Li, Lang;Ou, Yu;Deng, Lianrui
通讯作者:
Li, L
作者机构:
[Deng, Lianrui; Ou, Yu; Feng, Zhiying; Li, Lang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Deng, Lianrui; Ou, Yu; Feng, Zhiying; Li, Lang] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Template attack (TA);Deep learning-assisted template attack (DLATA);Transfer learning (TL);Triplet network;ASCAD
期刊:
Physical Communication
ISSN:
1874-4907
年:
2025
卷:
72
页码:
102710
基金类别:
CRediT authorship contribution statement Zhiying Feng: Writing – review & editing, Writing – original draft, Visualization, Supervision, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Lang Li: acquisition. Yu Ou: Project administration. Lianrui Deng: Validation.
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Deep learning-assisted template attack (DLATA) is a novel side-channel attack (SCA) method proposed by Lichao Wu at CHES2022. It utilizes a triplet network to assist template attacks (TA), avoiding the redundant training and hyperparameter tuning required in traditional DL-based SCA methods. However, the training of the triplet network requires a large number of power samples due to its unique structure. We propose a new optimization scheme, in which the transfer learning (TL) technology is used to train multiple models on several similar datasets with fewer power traces, to mitigation the pro...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com