版权说明 操作指南
首页 > 成果 > 详情

Multi-modal feature fusion for geographic image annotation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Ke;Zou, Changqing*;Bu, Shuhui;Liang, Yun;Zhang, Jian;...
通讯作者:
Zou, Changqing
作者机构:
[Li, Ke] Zhengzhou Inst Surveying & Mapping, Longhai Rd 66, Zhengzhou 450052, Henan, Peoples R China.
[Zou, Changqing] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Zou, Changqing; Liang, Yun] Simon Fraser Univ, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada.
[Bu, Shuhui] Northwestern Polytech Univ, Youyi West Rd 127, Xian 710072, Shaanxi, Peoples R China.
[Zhang, Jian] Zhejiang Int Studies Univ, Wensan Rd 140, Hangzhou 310012, Zhejiang, Peoples R China.
通讯机构:
[Zou, Changqing] H
[Zou, Changqing] S
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Simon Fraser Univ, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada.
语种:
英文
关键词:
Convolutional neural networks (CNNs);Deep learning;Geographic image annotation;Multi-modal feature fusion
期刊:
Pattern Recognition
ISSN:
0031-3203
年:
2018
卷:
73
页码:
1-14
基金类别:
We thank all the reviewers for their valuable comments and feedback. This work is supported in part by grants from the China’s National Key R&D Program (2017YFB0503503), National Natural Science Foundation of China (61573284), the Science and Technology Plan Project of Hunan Province (2016TP1020), HNU Start-up Grant (15B22), and the Program of Key Disciplines in Hunan Province.
机构署名:
本校为通讯机构
院系归属:
计算机科学与技术学院
摘要:
This paper presents a multi-modal feature fusion based framework to improve the geographic image annotation. To achieve effective representations of geographic images, the method leverages a low-to-high learning flow for both the deep and shallow modality features. It first extracts low-level features for each input image pixel, such as shallow modality features (SIFT, Color, and LBP) and deep modality features (CNNs). It then constructs mid-level features for each superpixel from low-level features. Finally it harvests high-level features from mid-level features by using deep belief networks ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com