Currently, Camouflaged Object Detection (COD) methods often rely on single-view feature perception, which struggles to fully capture camouflaged objects due to environmental interference such as background clutter, lighting variations, and viewpoint changes. To address this, we propose the Multi-view Collaboration Network (MCNet), inspired by human visual strategies for complex scene analysis. MCNet incorporates multiple perspectives for enhanced feature extraction. The global perception module takes the original, far, and near views, using different large-kernel convolutions and multi-head at...