版权说明 操作指南
首页 > 成果 > 详情

More observation leads to more clarity: Multi-view collaboration network for camouflaged object detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fangyan Wang;Ge Jiao*;Guowen Yue
通讯作者:
Ge Jiao
作者机构:
[Fangyan Wang; Guowen Yue] College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, Hunan, China
Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, 421002, Hunan, China
Hunan Engineering Research Center of Cyberspace Security Technology and Applications, Hengyang Normal University, Hengyang, 421002, Hunan, China
[Ge Jiao] College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, Hunan, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, 421002, Hunan, China<&wdkj&>Hunan Engineering Research Center of Cyberspace Security Technology and Applications, Hengyang Normal University, Hengyang, 421002, Hunan, China
通讯机构:
[Ge Jiao] C
College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, Hunan, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, 421002, Hunan, China<&wdkj&>Hunan Engineering Research Center of Cyberspace Security Technology and Applications, Hengyang Normal University, Hengyang, 421002, Hunan, China
语种:
英文
期刊:
Neurocomputing
ISSN:
0925-2312
年:
2025
页码:
130433
基金类别:
CRediT authorship contribution statement Fangyan Wang: Writing – original draft, Methodology, Data curation, Conceptualization. Ge Jiao: Writing – review & editing, Supervision, Project administration. Guowen Yue: Project administration, Investigation, acquisition.
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Currently, Camouflaged Object Detection (COD) methods often rely on single-view feature perception, which struggles to fully capture camouflaged objects due to environmental interference such as background clutter, lighting variations, and viewpoint changes. To address this, we propose the Multi-view Collaboration Network (MCNet), inspired by human visual strategies for complex scene analysis. MCNet incorporates multiple perspectives for enhanced feature extraction. The global perception module takes the original, far, and near views, using different large-kernel convolutions and multi-head at...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com