版权说明 操作指南
首页 > 成果 > 详情

Tripm: a multi-label deep learning SCA model for multi-byte attacks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Lianrui;Li, Lang;Ou, Yu;Xiang, Jiahao;Xia, Shengcheng
通讯作者:
Li, L
作者机构:
[Deng, Lianrui; Ou, Yu; Xia, Shengcheng; Li, Lang; Xiang, Jiahao] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Deng, Lianrui; Ou, Yu; Xia, Shengcheng; Li, Lang; Xiang, Jiahao] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
通讯机构:
[Li, L ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
语种:
英文
关键词:
Deep learning;Side-channel attack;Multilabel;Machine learning;Information security
期刊:
International Journal of Machine Learning and Cybernetics
ISSN:
1868-8071
年:
2025
页码:
1-16
基金类别:
Hunan Provincial Natural Science Foundation of China [2022JJ30103]; Postgraduate Scientific Research Innovation Project of Hunan Province [CX20240977]; The 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province [Xiangjiaotong [2022] 351]; Science and Technology Innovation Program of Hunan Province [2016TP1020]
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
物理与电子工程学院
摘要:
Deep learning methods have significantly impact in the side-channel attack (SCA) community. However, the training and verification phases of deep learning-based side-channel attacks (DL-SCA) typically focus on a single byte, which leads to the requirement of training numerous models to recover all partial key bytes. To resolve the problem, this paper proposes the TripM model, triple-keys attack model, which can attack three bytes in a single training session. First, TripM leverages label groups black to learn multiple bytes of leaked information in a single training session, where the label gr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com