版权说明 操作指南
首页 > 成果 > 详情

On universal quotient Blaschke products

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Liulan;Qian, Tao;Wang, Shilin
通讯作者:
Li, LL
作者机构:
[Li, Liulan; Li, LL] Hengyang Normal Univ, Coll Math & Stat, Hengyang, Hunan, Peoples R China.
[Qian, Tao] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau, Peoples R China.
[Wang, Shilin] Unitedhlth Grp, Med Informat Dept, Cypress, CA USA.
通讯机构:
[Li, LL ] H
Hengyang Normal Univ, Coll Math & Stat, Hengyang, Hunan, Peoples R China.
语种:
英文
关键词:
Universal series;finite Blaschke products;universal quotient Blaschke products;the Caratheodory theorem;the Helson-Sarason theorem;the Cauchy integral
期刊:
Complex Variables and Elliptic Equations
ISSN:
1747-6933
年:
2024
页码:
1-15
基金类别:
NSF of Hunan#&#&#(No. 2020JJ6038) the Scientific Research Fund of Hunan Provincial Education Department#&#&#(20A070) the Application-Oriented Characterized Disciplines, Double First-Class University Project of Hunan Province#&#&#(Xiangjiaotong [2018]469)
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
In this paper, we introduce a new member to the universal families, called universal quotient Blaschke product, which is a formal quotient of two formal infinite Blaschke products. A formal infinite Blaschke product is of the form B(z)=Pi(infinity)(k=1) z-z(k)/1-(z) over bar (k)z' where {zk}(k=1)(infinity) is a sequence of points in the unit disk but may not satisfy the Blaschke condition: Sigma(infinity)(k=1)(1 - vertical bar z(k vertical bar)) < infinity. A partial quotient of a universal quotient Blaschke product is the quotient of two finite Blaschke products. We show that the set of parti...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com