版权说明 操作指南
首页 > 成果 > 详情

ALGEBRAIC FUSION OF MULTIPLE CLASSIFIERS FOR HANDWRITTEN DIGITS RECOGNITION

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Zhao, Huihuang;Liu, Han*
通讯作者:
Liu, Han
作者机构:
[Zhao, Huihuang] Hengyang Normal Univ, Coll Comp Sci & technol, Hengyang 421008, Peoples R China.
[Liu, Han] Cardiff Univ, Sch Comp Sci & Informat, Queens Bldg,5 Parade, Cardiff CF24 3AA, Wales.
[Zhao, Huihuang] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China.
通讯机构:
[Liu, Han] C
Cardiff Univ, Sch Comp Sci & Informat, Queens Bldg,5 Parade, Cardiff CF24 3AA, Wales.
语种:
英文
关键词:
Image processing;Handwritten digits recognition;Machine learning;Ensemble learning;Multi-classifier fusion
期刊:
PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR)
年:
2018
页码:
250-255
会议名称:
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
会议论文集名称:
International Conference on Wavelet Analysis and Pattern Recognition
会议时间:
JUL 15-18, 2018
会议地点:
Chengdu, PEOPLES R CHINA
会议主办单位:
[Zhao, Huihuang] Hengyang Normal Univ, Coll Comp Sci & technol, Hengyang 421008, Peoples R China.^[Liu, Han] Cardiff Univ, Sch Comp Sci & Informat, Queens Bldg,5 Parade, Cardiff CF24 3AA, Wales.^[Zhao, Huihuang] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China.
会议赞助商:
Diee, Univ Alberta, Ulster Univ, IEEE, Portsmouth Univ, Univ Hyogo, IEEE Syst Man & Cybernet Soc, Univ Adelaide, Chengdu Univ, Univ Cagliari, Dept Elect & Electr Engn, Natl Key Lab Sci & Technol Blind Signal Proc
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-5386-5218-3
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61503128]; Science and Technology Plan Project of Hunan Province [2016TP102]; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [14B025, 16C0311]; Hunan Provincial Natural Science FoundationNatural Science Foundation of Hunan Province [2017JJ4001]
机构署名:
本校为第一机构
院系归属:
计算机科学与技术学院
摘要:
Recognition of handwritten digits is a very popular application of machine learning. In this context, each of the ten digits (0-9) is defined as a class in the setting of machine learning based classification tasks. In general, popular learning methods , such as support vector machine, neural networks and K nearest neighbours, have been used for classifying instances of handwritten digits to one of the ten classes. However, due to the diversity of handwriting styles from different people, it can happen that some handwritten digits (e.g. 4 and 9...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com