关于微分的教学,从认知心理学角度建议作如下调整:(1)将教材上"函数的微分"这一节放到下一章"微分中值定理与导数的应用"的"泰勒公式"这一节之后.导数一章专讲导数概念和求导法则.(2)将微分和泰勒公式在近似计算中的应用综合在一起,单独立一节,放在"函数的微分"这一节之后,突出近似计算的实际意义,便于比较.关于微分概念,要把握如下3个要点:(1)是函数增量的一级近似;(2)用导数和自变量增量的乘积表示;(3)局域性.一般说来,只有在自变量增量很小的情况下,函数的微分才是函数增量的主部,△y ≈dy,才有实际意义.