Abstract:Theinversedistanceweighting(IDW)isoneofwidelyacceptedmethodsemployedfor predictinganunknownspatialvalueusingknownvaluesobservedatasetofsamplelocations.Many factorsincludingspatialproximity,samplesizeanddistancedecayafecttheestimationofthe method simultaneously.However,mostofIDWGbasedmethodsdonotconsidertheefectofspatialanisotropy.In addition,mostofthesemethodscannotpredictaccurateinterpolatingvaluesbecausetheyonlyinvolvea solefactorforoptimization.ToobtainaccuratemisingvaluesandhighGresolutionspatialsurfacemodel, thepaperproposesanovelmultipleparameterssynchronizationoptimizationIDWalgorithmwhichinvolves anisotropy.Theproposedmethodsimultaneouslyoptimizestheparametersofanisotropy,neighborsizeand distancedecaytoimprovetheaccuracyofIDWinterpolationbyparticleswarmoptimization(PSO). Moreover,scalinganddirectionfactorareintroducedtocapturethevaryingofdistanceindiferent direction,andanewfitnesfunctionisschemedviacrosvalidationtechnique.Two diferentresolution datumareselectedtovalidatetheefectivenesofproposed method,andtheexperimentalresults demonstratethatourmethodsignificantlyoutperformthetypicalIDW method.Comparisonswiththerecently developedIDWGbasedmethod,i.e.CIDW(clasicalIDW),FIDW(fourquadrantIDW),AIDW(adaptiveGIDW) andKAIDW(KGnearestneighboradaptiveIDW),OK(ordinaryKriging),aswelasAnisOK(anisotropic OrdinaryKriging)arealsoimplemented,andtheexperimentsshowthatouralgorithmcanachievethebest interpolationresultsintermsofreliableandaccuracy. Key words:inverse distance weighting(IDW);spatial proximity;anisotropy;multiple parameters optimization;ParticleSwarmoptimization Foundationsupport:The National Natural Science Foundation of China (Nos.4196105;417150; 41830108);TheOutstandingYouthProjectofEducationDepartmentofHunanProvince(Nos.19B078; 19C0272);TheNationalKeyResearchandDevelopmentProgramofChina(No.2018YFE020780);The SocialSciencePlanningProjectofHunanProvince(No.17ZDB051)