版权说明 操作指南
首页 > 成果 > 详情

顾及各向异性的多参数协同优化IDW插值方法

认领
导出
Link by 中国知网学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
论文标题(英文):
An anisotropic IDW interpolation method with multiple parameters cooperative optimization
作者:
颜金彪;吴波;何清华
通讯作者:
Wu, Bo(wavelet778@sohu.com)
作者机构:
[颜金彪; 吴波; 何清华] School of Geography and Environment, Jiangxi Normal University, Nanchang
330022, China
National-Local Joint Engineering Laboratory on Digital Preservation and Innovative Technologies for the Culture of Traditional Villages and Towns, Hengyang Normal University, Hengyang
421002, China
[颜金彪] 330022, China<&wdkj&>National-Local Joint Engineering Laboratory on Digital Preservation and Innovative Technologies for the Culture of Traditional Villages and Towns, Hengyang Normal University, Hengyang
通讯机构:
[Wu, B.] S
School of Geography and Environment, China
语种:
中文
关键词:
反距离加权插值(IDW);空间邻近度;各向异性;多参数优化;粒子群算法
关键词(英文):
Anisotropy;Inverse distance weighting(IDW);Multiple parameters optimization;Particle Swarm optimization;Spatial proximity
期刊:
测绘学报
ISSN:
1001-1595
年:
2021
卷:
50
期:
5
页码:
675-684
基金类别:
Abstract:Theinversedistanceweighting(IDW)isoneofwidelyacceptedmethodsemployedfor predictinganunknownspatialvalueusingknownvaluesobservedatasetofsamplelocations.Many factorsincludingspatialproximity,samplesizeanddistancedecayafecttheestimationofthe method simultaneously.However,mostofIDWGbasedmethodsdonotconsidertheefectofspatialanisotropy.In addition,mostofthesemethodscannotpredictaccurateinterpolatingvaluesbecausetheyonlyinvolvea solefactorforoptimization.ToobtainaccuratemisingvaluesandhighGresolutionspatialsurfacemodel, thepaperproposesanovelmultipleparameterssynchronizationoptimizationIDWalgorithmwhichinvolves anisotropy.Theproposedmethodsimultaneouslyoptimizestheparametersofanisotropy,neighborsizeand distancedecaytoimprovetheaccuracyofIDWinterpolationbyparticleswarmoptimization(PSO). Moreover,scalinganddirectionfactorareintroducedtocapturethevaryingofdistanceindiferent direction,andanewfitnesfunctionisschemedviacrosvalidationtechnique.Two diferentresolution datumareselectedtovalidatetheefectivenesofproposed method,andtheexperimentalresults demonstratethatourmethodsignificantlyoutperformthetypicalIDW method.Comparisonswiththerecently developedIDWGbasedmethod,i.e.CIDW(clasicalIDW),FIDW(fourquadrantIDW),AIDW(adaptiveGIDW) andKAIDW(KGnearestneighboradaptiveIDW),OK(ordinaryKriging),aswelasAnisOK(anisotropic OrdinaryKriging)arealsoimplemented,andtheexperimentsshowthatouralgorithmcanachievethebest interpolationresultsintermsofreliableandaccuracy. Key words:inverse distance weighting(IDW);spatial proximity;anisotropy;multiple parameters optimization;ParticleSwarmoptimization Foundationsupport:The National Natural Science Foundation of China (Nos.4196105;417150; 41830108);TheOutstandingYouthProjectofEducationDepartmentofHunanProvince(Nos.19B078; 19C0272);TheNationalKeyResearchandDevelopmentProgramofChina(No.2018YFE020780);The SocialSciencePlanningProjectofHunanProvince(No.17ZDB051)
机构署名:
本校为其他机构
摘要:
反距离加权插值(inverse distance weighting, IDW)的精度受到空间邻近度、距离衰减系数及最邻近点数等多个参数共同的影响。然而,目前的IDW插值算法大多仅考虑单参数的调优,或对各参数独立调优,难以实现插值模型的整体优化。此外,传统的IDW插值算法没有顾及各向异性对空间邻近度的影响。本文提出一种顾及空间各向异性的多参数协同优化IDW插值算法(PIDW)。首先,引入距离调节参数以及方向参数,将经典各向同性的欧氏空间距离扩展为各向异性的"椭圆"距离;然后,引入粒子群优化算法对最邻近点数、距离衰减系数、距离调节及各向异性方向的多参数进行协同优化,获得插值精度的偏差与方差在全局意义下...
摘要(英文):
The inverse distance weighting (IDW) is one of widely accepted methods employed for predicting an unknown spatial value using known values observed at a set of sample locations. Many factors including spatial proximity, sample size and distance decay affect the estimation of the method simultaneously. However, most of IDW-based methods do not consider the effect of spatial anisotropy. In addition, most of these methods cannot predict accurate interpolating values because they only involve a sole factor for optimization. To obtain accurate missi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com