版权说明 操作指南
首页 > 成果 > 详情

HLSK-CASMamba: hybrid large selective kernel and convolutional additive self-attention mamba for hyperspectral image classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wan, Xiaoqing;He, Yupeng;Chen, Feng;Sun, Ziqi;Mo, Dongtao
通讯作者:
Wan, XQ
作者机构:
[Mo, Dongtao; Chen, Feng; He, Yupeng; Wan, Xiaoqing; Sun, Ziqi] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Hunan, Peoples R China.
[Wan, Xiaoqing] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Hunan, Peoples R China.
通讯机构:
[Wan, XQ ] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Hunan, Peoples R China.
Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Hunan, Peoples R China.
语种:
英文
关键词:
Hyperspectral image;Classification;Convolutional neural networks (CNNs);Large selective kernel;Conv additive self-attention;Mamba
期刊:
Journal of King Saud University - Computer and Information Sciences
ISSN:
1319-1578
年:
2025
卷:
37
期:
4
页码:
1-20
基金类别:
This research was supported by the Scientific Research Fund of Hunan Provincial Education Department (23B0666), the Science and Technology Plan Project of Hunan Province (2016TP1020), the 14th Five-Year Plan Key Disciplines and Application oriented Special Disciplines of Hunan Province (Xiangjiaotong [2022] 351) and the Hengyang City Guidance Plan Project (202323036897).
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
Classifying hyperspectral images (HSIs) is a key challenge in remote sensing, with convolutional neural networks (CNNs) and transformer models becoming leading techniques in this area. CNNs, while effective, often struggle to adequately capture intricate semantic features, and increasing network depth leads to significantly higher computational costs. Conversely, transformers, despite their efficacy in modeling spectral-spatial dependencies, introduce significant computational overhead due to their complexity. Mamba, leveraging the state space model (SSM), presents a compelling alternative tha...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com