版权说明 操作指南
首页 > 成果 > 详情

Action recognition with stacked fisher vectors

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Peng, Xiaojiang;Zou, Changqing;Qiao, Yu*;Peng, Qiang
通讯作者:
Qiao, Yu
作者机构:
[Qiao, Yu; Peng, Xiaojiang; Zou, Changqing] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab CVPR, Shenzhen, Peoples R China.
[Peng, Xiaojiang] Southwest Jiaotong Univ, Chengdu, Peoples R China.
[Peng, Xiaojiang; Zou, Changqing] Hengyang Normal Univ, Dept Comp Sci, Hengyang, Peoples R China.
[Qiao, Yu] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
通讯机构:
[Qiao, Yu] C
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab CVPR, Shenzhen, Peoples R China.
语种:
英文
关键词:
Encoding (symbols);Action recognition;Action representations;Dimensionality reduction;Fisher vectors;Large margins;Local feature;Semantic information;State-of-the-art methods;Vectors
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2014
卷:
8693 LNCS
期:
PART 5
页码:
581-595
会议名称:
13th European Conference on Computer Vision, ECCV 2014
会议论文集名称:
Lecture Notes in Computer Science
会议时间:
6 September 2014 through 12 September 2014
会议地点:
Zurich
会议主办单位:
[Peng, Xiaojiang;Zou, Changqing;Qiao, Yu] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab CVPR, Shenzhen, Peoples R China.^[Peng, Xiaojiang] Southwest Jiaotong Univ, Chengdu, Peoples R China.^[Peng, Xiaojiang;Zou, Changqing] Hengyang Normal Univ, Dept Comp Sci, Hengyang, Peoples R China.^[Qiao, Yu] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
主编:
Fleet, D Pajdla, T Schiele, B Tuytelaars, T
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer Verlag
ISBN:
978-3-319-10602-1; 978-3-319-10601-4
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [91320101, 61036008, 60972111]; Shenzhen Basic Research Program [JC201005270350A, JCYJ20120903092050890, JCYJ20120617114614438]; Talents Program of CAS, Guangdong Innovative Research Team Program [201001D0104648280]
机构署名:
本校为其他机构
院系归属:
计算机科学与技术学院
摘要:
Representation of video is a vital problem in action recognition. This paper proposes Stacked Fisher Vectors (SFV), a new representation with multi-layer nested Fisher vector encoding, for action recognition. In the first layer, we densely sample large subvolumes from input videos, extract local features, and encode them using Fisher vectors (FVs). The second layer compresses the FVs of subvolumes obtained in previous layer, and then encodes them again with Fisher vectors. Compared with standard FV, SFV allows refining the representation and ab...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com