版权说明 操作指南
首页 > 成果 > 详情

A Split-Complex Valued Gradient-Based Descent Neuro-Fuzzy Algorithm for TS System and Its Convergence

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Yan*;Yang, Dakun;Li, Long;Yang, Jie
通讯作者:
Liu, Yan
作者机构:
[Liu, Yan] Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian, Peoples R China
[Yang, Dakun] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China
[Li, Long] Hengyang Normal Univ, Dept Math & Computat Sci, Hengyang, Peoples R China
[Yang, Jie] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
通讯机构:
[Liu, Yan] D
Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian, Peoples R China.
语种:
英文
关键词:
Neuro-fuzzy;TS system;Split-complex valued;Neural networks;Convergence
期刊:
Neural Processing Letters
ISSN:
1370-4621
年:
2019
卷:
50
期:
2
页码:
1589-1609
基金类别:
National Natural Science Foundation of China#&#&#61403056#&#&#11401185 National Natural Science Foundation of China#&#&#11201051 Natural Science Foundation Guidance Project of Liaoning Province#&#&#201602050 Dalian Youth Science and Technology Star Project
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In order to broaden the study of the most popular and general Takagi-Sugeno (TS) system, we propose a complex-valued neuro-fuzzy inference system which realises the zero-order TS system in the complex-valued network architecture and develop it. In the complex domain, boundedness and analyticity cannot be achieved together. The splitting strategy is given by computing the gradients of the real-valued error function with respect to the real and the imaginary parts of the weight parameters independently. Specifically, this system has four layers: in the Gaussian layer, the L-dimensional complex-v...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com