版权说明 操作指南
首页 > 成果 > 详情

Radial Length, Radial John Disks and K-quasiconformal Harmonic Mappings

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Shaolin;Ponnusamy, Saminathan*
通讯作者:
Ponnusamy, Saminathan
作者机构:
[Chen, Shaolin] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
[Ponnusamy, Saminathan] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India.
通讯机构:
[Ponnusamy, Saminathan] I
Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India.
语种:
英文
关键词:
K-quasiconformal harmonic mapping;Radial John disk;Radial length;Pommerenke interior domain
期刊:
Potential Analysis
ISSN:
0926-2601
年:
2019
卷:
50
期:
3
页码:
415-437
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11401184, 11571216]; Construct Program of the Key Discipline in Hunan Province; Science and Technology Plan of Hunan Province [2016TP1020]; Mathematical Research Impact Centric Support of DST, India [MTR/2017/000367]
机构署名:
本校为第一机构
院系归属:
数学与统计学院
摘要:
In this article, we continue our investigations of the boundary behavior of harmonic mappings. We first discuss the classical problem on the growth of radial length and obtain a sharp growth theorem of the radial length of K-quasiconformal harmonic mappings. Then we present an alternate characterization of radial John disks. In addition, we investigate the linear measure distortion and the Lipschitz continuity on K-quasiconformal harmonic mappings of the unit disk onto a radial John disk. Finally, using Pommerenke interior domains, we characterize ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com