版权说明 操作指南
首页 > 成果 > 详情

Semi-supervised Iterative Learning Network for Camouflaged Object Detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Guowen Yue;Ge Jiao;Jiahao Xiang
作者机构:
[Guowen Yue; Ge Jiao; Jiahao Xiang] Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
Camouflaged object detection;Semi-supervised learning;Mamba;Co-training;Iterative learning
期刊:
IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
ISSN:
1520-6149
年:
2025
页码:
1-5
会议名称:
ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
会议论文集名称:
ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
会议时间:
06 April 2025
会议地点:
Hyderabad, India
出版者:
IEEE
ISBN:
979-8-3503-6875-8
机构署名:
本校为第一机构
摘要:
Current camouflaged object detection (COD) methods rely heavily on large-scale datasets with pixel-level annotations. We propose a semi-supervised iterative learning network (SILNet) to address the reliance on large-scale pixel-level annotations in COD. SILNet employs a co-training strategy with convolutional networks and Transformers as encoders, followed by a binary gated decoder (BGD) for feature fusion. To optimize the use of labeled data, we introduce an optimal representative election mechanism (OREM) to identify key sequences of unlabele...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com