版权说明 操作指南
首页 > 成果 > 详情

Graph Autoencoder with Preserving Node Attribute Similarity

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Lin, Mugang;Wen, Kunhui;Zhu, Xuanying;Zhao, Huihuang;Sun, Xianfang
通讯作者:
Mugang Lin
作者机构:
[Zhu, Xuanying; Zhao, Huihuang; Wen, Kunhui; Lin, Mugang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China.
[Zhao, Huihuang; Lin, Mugang] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China.
[Sun, Xianfang] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24 4AG, Wales.
通讯机构:
[Mugang Lin] C
College of Computer Science and Technology, Hengyang Normal University, Hengyang 421002, China<&wdkj&>Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang 421002, China<&wdkj&>Author to whom correspondence should be addressed.
语种:
英文
关键词:
graph representation learning;graph autoencoder;unsupervised learning;k-nearest neighbor
期刊:
Entropy
ISSN:
1099-4300
年:
2023
卷:
25
期:
4
页码:
567-
基金类别:
This research was supported in part by the Scientific Research Fund of Hunan Provincial Education Department (22A0502), the National Natural Science Foundation of China (61772179), the Hunan Provincial Natural Science Foundation of China (2019JJ40005), the 14th Five-Year Plan Key Disciplines and Application-Oriented Special Disciplines of Hunan Province (Xiangjiaotong (2022) 351), the Science and Technology Plan Project of Hunan Province (2016TP1020), the Science and Technology Innovation Project of Hengyang (202250045231), the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (2022HSKFJJ012), and the Postgraduate Scientific Research Innovation Project of Hunan Province (QL20210262).
机构署名:
本校为第一机构
院系归属:
计算机科学与技术学院
摘要:
The graph autoencoder (GAE) is a powerful graph representation learning tool in an unsupervised learning manner for graph data. However, most existing GAE-based methods typically focus on preserving the graph topological structure by reconstructing the adjacency matrix while ignoring the preservation of the attribute information of nodes. Thus, the node attributes cannot be fully learned and the ability of the GAE to learn higher-quality representations is weakened. To address the issue, this paper proposes a novel GAE model that preserves node attribute similarity. The structural graph and th...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com