版权说明 操作指南
首页 > 成果 > 详情

Image Neural Style Transfer With Global and Local Optimization Fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Hui-Huang*;Rosin, Paul L.;Lai, Yu-Kun;Lin, Mu-Gang;Liu, Qin-Yun
通讯作者:
Zhao, Hui-Huang
作者机构:
[Liu, Qin-Yun; Lin, Mu-Gang; Zhao, Hui-Huang] Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421008, Peoples R China.
[Liu, Qin-Yun; Lin, Mu-Gang; Zhao, Hui-Huang] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421008, Hunan, Peoples R China.
[Lai, Yu-Kun; Rosin, Paul L.] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24 3AA, S Glam, Wales.
通讯机构:
[Zhao, Hui-Huang] H
Hengyang Normal Univ, Coll Comp Sci & Technol, Hengyang 421008, Peoples R China.
Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421008, Hunan, Peoples R China.
语种:
英文
关键词:
Deep neural networks;gram matrix;local patch;Markov random field;style transfer
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2019
卷:
7
页码:
85573-85580
基金类别:
This work was supported in part by the National Natural Science Foundation of China under Grant 61503128 and Grant 61772179, in part by the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020, in part by the Scientific Research Fund of Hunan Provincial Education Department under Grant 16C0226, Grant 17C0223, and Grant 18A333, in part by the Hengyang Guided Science and Technology Projects and Application-Oriented Special Disciplines under Grant Hengkefa [2018]60-31, in part by the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong [2018]469, in part by the Hunan Province Special Funds of Central Government for Guiding Local Science and Technology Development under Grant 2018CT5001, and in part by the Subject Group Construction Project of Hengyang Normal University under Grant 18XKQ02.
机构署名:
本校为第一且通讯机构
院系归属:
计算机科学与技术学院
摘要:
This paper presents a new image synthesis method for image style transfer. For some common methods, the textures and colors in the style image are sometimes applied inappropriately to the content image, which generates artifacts. In order to improve the results, we propose a novel method based on a new strategy that combines both local and global style losses. On the one hand, a style loss function based on a local approach is used to keep the style details. On the other hand, another style loss function based on global measures is used to capture more global structural information. The result...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com