版权说明 操作指南
首页 > 成果 > 详情

Sketch-based 3D Model Retrieval via Multi-feature Fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wen, Yafei*;Zou, Changqing;Liu, Jianzhuang;Du, Shuze;Chen, Shifeng
通讯作者:
Wen, Yafei
作者机构:
[Chen, Shifeng; Wen, Yafei; Zou, Changqing; Liu, Jianzhuang] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Comp Vis & Pat Rec, Shenzhen, Peoples R China.
[Du, Shuze] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu, Peoples R China.
[Du, Shuze; Wen, Yafei; Zou, Changqing] Univ Chinese Acad Sci, Beijing, Peoples R China.
[Zou, Changqing] Hengyang Normal Univ, Dept Phys & Elect Informat Sci, Hengyang, Peoples R China.
[Chen, Shifeng; Wen, Yafei; Zou, Changqing; Liu, Jianzhuang] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
通讯机构:
[Wen, Yafei] C
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Comp Vis & Pat Rec, Shenzhen, Peoples R China.
语种:
英文
关键词:
3D model retrieval;bag-of-features;feature fusion;shape descriptor
期刊:
Proceedings - International Conference on Pattern Recognition
ISSN:
1051-4651
年:
2014
页码:
4570-4575
会议名称:
2014 22nd International Conference on Pattern Recognition (ICPR)
机构署名:
本校为其他机构
院系归属:
物理与电子工程学院
摘要:
Sketch-based 3D model retrieval provides a convenient way for users to search for 3D models by sketches. Traditionally, this task is converted to a sketch-based 2D shape retrieval problem by projecting 3D models to 2D images. Local invariant features have been widely used to tackle this problem. However, it suffers from the lack of global context and easily fails when images of different 3D models share multiple similar regions. In this paper, we propose a joint description by fusing local statistical structures and global spatial features. Our description is invariant to scale, translate and ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com