版权说明 操作指南
首页 > 成果 > 详情

On Asymptotically Sharp Bi-Lipschitz Inequalities of Quasiconformal Mappings Satisfying Inhomogeneous Polyharmonic Equations

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Shaolin*;Kalaj, David
通讯作者:
Chen, Shaolin
作者机构:
[Chen, Shaolin] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
[Kalaj, David] Univ Montenegro, Fac Nat Sci & Math, Cetinjski Put Bb, Podgorica 81000, Montenegro.
通讯机构:
[Chen, Shaolin] H
Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China.
语种:
英文
关键词:
Bi-Lipschitz continuity;Quasiconformal mapping;Polyharmonic equation
期刊:
JOURNAL OF GEOMETRIC ANALYSIS
ISSN:
1050-6926
年:
2021
卷:
31
期:
5
页码:
4865-4905
基金类别:
We are grateful to the referee for her/his comments and suggestions. This research was partly supported by the exchange project for the third regular session of the China-Montenegro Committee for Cooperation in Science and Technology (No. 3-13), the Hunan Provincial Education Department Outstanding Youth Project (No. 18B365), the Science and Technology Plan Project of Hengyang City (No. 2018KJ125), the National Natural Science Foundation of China (No. 11571216), the Science and Technology Plan Project of Hunan Province (No. 2016TP1020), the Science and Technology Plan Project of Hengyang City (No. 2017KJ183), and the Application-Oriented Characterized Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
For two constants K≥ 1 and K′≥ 0 , suppose that f is a (K, K′) -quasiconformal self-mapping of the unit disk D, which satisfies the following: (1) the inhomogeneous polyharmonic equation Δ nf= Δ (Δ n-1f) = φn in D(φn∈ C(D¯)) , (2) the boundary conditions Δn-1f=φn-1,…,Δ1f=φ1 on T (φj∈ C(T) for j∈ { 1 , … , n- 1 } and T denotes the unit circle), and (3) f(0) = 0 , where n≥ 2 is an integer. The main aim of this paper is to prove that f is Lipschitz continuous, and, further, it is bi-Lipschitz continuous when ‖ φj‖ ∞ are sm...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com