版权说明 操作指南
首页 > 成果 > 详情

Music Genre Classification based on Bidirectional-Long Short Term Memory Combined Convolutional Neural Networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Mingcong Gao
作者机构:
[Mingcong Gao] Hengyang Normal University, Hengyang, China
语种:
英文
关键词:
bidirectional-long short term memory;convolutional neural network;deep learning;mel-frequency cepstral coefficients;music genre classification
年:
2024
页码:
1-4
会议名称:
2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)
会议论文集名称:
2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)
会议时间:
23 August 2024
会议地点:
Hassan, India
出版者:
IEEE
ISBN:
979-8-3503-6067-7
基金类别:
10.13039/501100008082-Hengyang Normal University
机构署名:
本校为第一机构
摘要:
Music is known to be time series data, where the increase in the data size pose a significant challenge to build a robust music genre classification system. The robust system requires large amount of labelled music data and necessitates the requirement of capturing effective data features for enhanced classification of music genre. The proposed research focused on developing a Deep Learning (DL) framework for classification with four steps. Initially, the music labelled data is collected from the GTZAN and ballroom dataset. The collected data is pre-processed using normalization for equalizing...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com