版权说明 操作指南
首页 > 成果 > 详情

Camouflaged Instance Segmentation From Global Capture to Local Refinement

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Chen;Jiao, Ge;Wu, Yun;Zhao, Weichen
通讯作者:
Jiao, G
作者机构:
[Li, Chen; Wu, Yun; Jiao, Ge; Zhao, Weichen] Hengyang Normal Univ, Sch Comp Sci & Technol, Hengyang 421007, Peoples R China.
通讯机构:
[Jiao, G ] H
Hengyang Normal Univ, Sch Comp Sci & Technol, Hengyang 421007, Peoples R China.
语种:
英文
关键词:
Feature extraction;Transformers;Kernel;Instance segmentation;Decoding;Head;Task analysis;Camouflaged instance segmentation;feature representation;global capture;local refinement
期刊:
IEEE Signal Processing Letters
ISSN:
1070-9908
年:
2024
卷:
31
页码:
661-665
基金类别:
Postgraduate Scientific Research Innovation Project of Hunan Province (Grant Number: CX20231264) 10.13039/501100004735-Natural Science Foundation of Hunan Province (Grant Number: 2021JJ50074 and 2022JJ50016) 10.13039/501100019081-Science and Technology Program of Hunan Province (Grant Number: 2016TP1020) 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province (Grant Number: Xiangjiaotong [2022] 351)
机构署名:
本校为第一且通讯机构
摘要:
Camouflaged instance segmentation (CIS) aims to segment instances that are seamlessly embedded in their surroundings. Existing CIS methods often focus on utilizing global information but neglect local information, resulting in incomplete feature representation and reduced accuracy. To address this, we propose a global-to-local network (GLNet) for CIS, leveraging both global and local information for enhanced feature representation and segmentation. Specifically, GLNet consists of two main components: global capture and local refinement. In global capture, we introduce a novel dual-branch convo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com